skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eisenberg, Ann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physical computing enables learners to create interactive projects using tangible materials and electronic components. These projects commonly utilize microcontroller boards like the micro:bit. In contrast, computer vision (CV) is a powerful technique for detecting input through interaction with everyday materials like paper, and it can be utilized for physical computing projects. However, CV-based toolkits are typically limited to input detection and rely on screen-based or projected outputs. This paper presents a hybrid approach that integrates a CV-based platform called Paper Playground with the micro:bit electronics platform. By combining CV-detected, paper-based inputs with the rich input-output possibilities of microcontroller-based systems, we showcase a multimodal physical computing toolkit. Through three project examples, we explore how this hybrid approach can enhance the creative possibilities in physical computing, and develop a preliminary design space combining CV-based and electronics-based physical computing. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  2. Paper prototyping presents a low-entry barrier method to engaging youth in interaction design. Purely paper-based designs leave a large gap between ideation and implementation. Paper Playground is a prototyping tool that connects physical and virtual papers with JavaScript programs, enabling the creation of multimodal prototypes in both face-to-face and virtual settings. Paper Playground is being designed and developed through iterative co-design activities including youth and adults. Here we present findings from remote co-design sessions with youth, investigating what affordances the participants requested from a multimodal prototyping tool. We reflect on the co-designers desires and remarks on paper use for interactive project design, remote collaborative use, and extensibility for physical computing. 
    more » « less
  3. Sensory extensions enhance our awareness by transforming variations in stimuli normally undetectable by human senses into perceivable outputs. Similarly, interactive simulations for learning promote an understanding of abstract phenomena. Combining sensory extension devices with interactive simulations gives users the novel opportunity to connect their sensory experiences in the physical world to computer-simulated concepts. We explore this opportunity by designing a suite of wearable sensory extension devices that interface with a uniquely inclusive PhET Simulation, Ratio and Proportion. In this simulation, two hands can be moved on-screen to various values, representing different mathematical ratios. Users explore changing hand heights to find and maintain ratios through visual and auditory feedback. Our sensory extension devices translate force, distance, sound frequency, and magnetic field strength to quantitative values in order to control individual hands in the computer simulation. This paper describes the design of the devices and our analysis of feedback from 23 high-school aged youth who used our designs to interact with the Ratio and Proportion simulation. 
    more » « less
  4. null (Ed.)
    E-textiles, which embed circuitry into textile fabrics, blend art and creative expression with engineering, making it a popular choice for STEAM classrooms [6, 12]. Currently, e-textile development relies on tools intended for traditional embedded systems, which utilize printed circuit boards and insulated wires. These tools do not translate well to e-textiles, which utilize fabric and uninsulated conductive thread. This mismatch of tools and materials can lead to an overly complicated development process for novices. In particular, rapid prototyping tools for traditional embedded systems are poorly matched for e-textile prototyping. This paper presents the ThreadBoard, a tool that supports rapid prototyping of e-textile circuits. With rapid prototyping, students can test circuit designs and identify circuitry errors prior to their sewn project. We present the design process used to iteratively create the ThreadBoard’s layout, with the goal of improving its usability for e-textile creators. 
    more » « less